类Sora模型到底懂不懂物理?字节完成系统性实验证明
Sora爆火以来,模明“视频生成模型到底懂不懂物理规律”受到热议,型到系统性实但业界一直未有研究证实。底懂近日,不懂字节跳动豆包大模型团队公布最新论文,物理完成研究历时8个月,字节围绕“视频生成模型距离世界模型有多远”首次在业界完成系统性实验并给出明确结论:视频生成模型可以记忆训练案例,验证但暂时还无法真正理解物理规律,模明做到“举一反三”。型到系统性实
图灵奖得主、底懂Meta首席AI科学家杨立昆点赞并转发了该研究,不懂表示“结论不令人意外,物理完成但很高兴终于有人做了这个尝试!字节”
自OpenAI发布Sora模型以来,验证很多视频生成模型都会强调其生成结果对物理规律的模明遵循。豆包大模型视觉团队相关小组,对视频生成模型究竟能否从视觉数据中“发现”并“理解”物理定律感到好奇,决定深入研究。
历时8个月,该团队完成了业界首个系统性的实验研究。团队通过专门开发的物理引擎合成了匀速直接运动、小球碰撞、抛物线运动等经典物理场景的运动视频,用于训练基于主流DiT架构的视频生成模型。然后,通过检验模型后续生成的视频在运动和碰撞方面是否符合力学定律,判断模型是否真正理解了物理规律,并具有“世界模型”的潜力。
实验中设计的不同运动场景
豆包大模型团队的实验发现,即使遵循“Scaling Law”增大模型参数规模和数据量,模型依然无法抽象出一般物理规则,做到真正“理解”。
以最简单的匀速直线运动为例,当模型学习了不同速度下小球保持匀速直线运动的训练数据后,给定初始几帧,要求模型生成小球在训练集速度区间内匀速直线运动的视频,随着模型参数和训练数据量的增加,生成的视频逐渐更符合物理规律。
然而,当要求模型生成未曾见过的速度区间(即超出训练数据范围)的运动视频时,模型突然不再遵循物理规律,并且无论如何增加模型参数或训练数据,生成的结果都没有显著改进。这表明,视频生成模型无法真正理解物理规律,也无法将这些规律泛化应用到全新的场景中。
通过进一步的实验分析,研究团队得出结论,“生成新视频时,模型主要依赖对训练案例的记忆和匹配。视频生成模型就像一个只会‘抄作业’的学生,一旦遇到从未见过的场景,如不同大小、速度的物体相互作用,就会‘犯迷糊’,生成结果与物理规则不符。”
不过,研究中也有一个好消息:如果训练视频中所有概念和物体都是模型已熟悉的,此时加大训练视频的复杂度,比如组合增加物体间的物理交互,通过加大训练数据,模型对物理规律的遵循将越来越好。这一结果可为视频生成模型继续提升表现提供启发。
据了解,本研究两位核心一作都非常年轻,一位是95后,一位是00后,在豆包大模型团队专注视觉领域的基础研究工作。作者们一直对世界模型感兴趣,在8个月的探索中,他们阅读了大量物理学研究文献,也尝试从游戏中获得研发灵感,历经多次失败后,最终一步步确定研究思路和实验方法。
友链
外链
互链
Copyright © 2023 Powered by
六合彩图库源码【购买联系电报bc3979】AC彩票网站源码|六合彩源码|彩票搭建|新中原六合彩源码|【网站bc9797.com】六合彩论坛源码【联系飞机bc3979】
sitemap
-
文章
2949
-
浏览
9
-
获赞
727
热门推荐
-
优衣库 x《花生漫画》全新联名 T 恤系列释出
潮牌汇 / 潮流资讯 / 优衣库 x《花生漫画》全新联名 T 恤系列释出2020年02月24日浏览:5644 今年,美国漫画家查尔斯·舒尔茨画的漫画《花生漫画》PEAN关羽在和夏侯惇的对决中,为何败的可能性比较大?
三国(220年-280年)是中国历史上位于汉朝之后,晋朝之前的一段历史时期。这一个时期,先后出现了曹魏、蜀汉、东吴三个主要政权。那么下面趣历史小编就为大家带来关于夏侯惇和关羽硬拼,谁的胜算大的详细介绍与诸葛亮辩论时,理屈词穷的王朗究竟会怎么结束?
三国(220年-280年)是中国历史上位于汉朝之后,晋朝之前的一段历史时期。这一个时期,先后出现了曹魏、蜀汉、东吴三个主要政权。那么下面趣历史小编就为大家带来关于王朗和诸葛亮对骂,如果诸葛亮不打断他,在武功与带兵能力方面,是张飞还是魏延会更胜一筹?
三国(220年-280年)是中国历史上位于汉朝之后,晋朝之前的一段历史时期。这一个时期,先后出现了曹魏、蜀汉、东吴三个主要政权。那么下面趣历史小编就为大家带来关于魏延和张飞相比,谁更厉害的详细介绍,一曼晚为曼联评分:安东尼2分最低,梅努、小麦、霍伊伦8分最高
英超第22轮,曼联客场4-3险胜狼队,赛后,《曼市》为曼联全队评分,替补登场的安东尼2分最低,进球功臣梅努、麦克托米奈、霍伊伦等人8分并列最高。 《曼市》为曼联全队评分 门将:奥纳纳4分后卫:达洛特8如果赵云或马超替关羽镇守荆州,有多大的概率能守住?
三国(220年-280年)是中国历史上位于汉朝之后,晋朝之前的一段历史时期。这一个时期,先后出现了曹魏、蜀汉、东吴三个主要政权。那么下面趣历史小编就为大家带来关于如果镇守荆州的是这2人,很大概率守住荆曹爽为什么斗不过司马懿?优柔寡断决定了他一事无成
三国(220年-280年)是中国历史上位于汉朝之后,晋朝之前的一段历史时期。这一个时期,先后出现了曹魏、蜀汉、东吴三个主要政权。那么下面趣历史小编就为大家带来关于如果曹爽没有选择投降,能斗得过司马懿吗黄巾之战时,董卓为什么不招揽刘备三人到自己麾下?
三国(220年-280年)是中国历史上位于汉朝之后,晋朝之前的一段历史时期。这一个时期,先后出现了曹魏、蜀汉、东吴三个主要政权。那么下面趣历史小编就为大家带来关于刘关张已经救下董卓,他为何还不重用这三范斯 UltraRange EXO 多功能鞋款系列开售,6 色可选
潮牌汇 / 潮流资讯 / 范斯 UltraRange EXO 多功能鞋款系列开售,6 色可选2020年02月15日浏览:3991 相继推出多款别注设计后,近日美乐淘潮牌曹操为何不再单打独斗,而是让徐晃、张郃双战赵云?
三国(220年-280年)是中国历史上位于汉朝之后,晋朝之前的一段历史时期。这一个时期,先后出现了曹魏、蜀汉、东吴三个主要政权。那么下面趣历史小编就为大家带来关于曹操遇到赵云,为何派出徐晃和张郃两人,处暑:秋季的第二个节气,意味着炎热暑天即将结束
今天是2022年8月23日,今日11时16分,将迎来处暑节气。处暑是二十四节气中第十四个节气,也是秋季的第二个节气。《月令七十二候集解》说:“处,止也,暑气至此而止矣。”处暑,即为”出暑“,“处”的本《欢乐颂3》陈祖法动了歪心思?想骗朱喆为他担保
《欢乐颂3》堪比翻版“小时代”,新五美中叶蓁蓁和何悯鸿是真正的白富美,她们家境优渥,小日子有滋有味,而高冷美人方芷衡却将自己伪装成名媛,目的只为了报复有钱老板李勋。欢乐颂22楼的五个女孩当中,朱喆最清黛安芬内衣(黛安芬内衣中国生产基地)
黛安芬内衣(黛安芬内衣中国生产基地)来源:时尚服装网阅读:2717娅筑和黛安芬内衣哪个好1、黛安芬 世界女性内衣第一品牌,有着和现代内衣一同起源的112年历史,行销120 个国家,每年产量超过2亿件。为何即使刘备给关羽派了得力谋士,荆州依然会失守?
三国(220年-280年)是中国历史上位于汉朝之后,晋朝之前的一段历史时期。这一个时期,先后出现了曹魏、蜀汉、东吴三个主要政权。那么下面趣历史小编就为大家带来关于如果刘备给关羽安排一个得力谋士,结果如清明节为什么要插柳?有什么寓意?
清明节为什么要插柳?有什么寓意?其实关于这个习俗有一种说法:中国人以清明、七月半和十月朔为三大鬼节,是百鬼出没讨索之时。人们为防止鬼的侵扰迫害,而插柳戴柳。柳在人们的心目中有辟邪的功用。受道教、佛教的